

Environmental implications of shared micromobility services

Dr. Daniel J. Reck | 8 September 2022

Several new mobility services were recently introduced to cities

https://www.voanews.com/economy-business/e-scooters-put-swedish-startup-road-positive-cashflow

https://seattletransitblog.com/2020/05/14/with-ubers-investment-lime-is-getting-back-into-the-local-bike-share-game/

https://www.aa.com.tr/en/americas/us-envoy-concerned-by-ubers-departure-from-colombia/1725652

Dockless shared micro-mobility services have seen particularly fast roll-outs

... and have challenged city administrations in many places

https://www.forbes.com/sites/alexledsom/2019/09/10/e-scooter-havoc-across-french-cities-is-acrackdown-needed/?sh=3d244de83038

The Atlantic

The Bike-Share Oversupply in China: Huge Piles of Abandoned and Broken Bicycles

ALAN TAYLOR | MARCH 22, 2018 | 30 PHOTOS | IN FOCUS

https://www.theatlantic.com/photo/2018/03/bike-share-oversupply-in-china-huge-piles-of-abandoned-and-broken-bicycles/556268/

Effective planning and regulation is hindered by knowledge gaps

Use of shared micro-mobility

- How does the use of different shared micro-mobility services differ across space and time?
- How do users choose between different shared micro-mobility services?

Users of shared micro-mobility Interactions with other modes

- How do user groups differ between shared micro-mobility services?
- Are there any equity concerns?

- How do shared micro-mobility services affect the use of other transport modes?
- Which do they substitute?
- What are their environmental implications?

Data and methods

How can emerging data sources be used to advance our understanding of shared micro-mobility travel behavior?

Adapted from: Transportation Research Part D: Transport Environment - Call for Papers for Special Issue: Understanding and planning shared micro-mobility (15 Feb 2020)

Overview of contributions on shared micro-mobility

All papers available open access online

Use of shared micro-mobility

Users of shared micro-mobility Interactions with other modes

Reck, D.J., H. Haitao, S. Guidon and K.W. Axhausen (2021) Explaining shared micro-mobility usage, competition and mode choice by modelling empirical data from Zurich, Switzerland, *Transportation Research Part C: Emerging Technologies*, **124**: 102947.

Reck, D.J. and K.W. Axhausen (2021) Who uses shared micro-mobility services? Empirical evidence from Zurich, Switzerland, *Transportation* Research Part D: Transport and Environment, **94**: 102803.

Reck, D.J., H. Martin and K.W. Axhausen (2022) Mode choice, substitution patterns and environmental impacts of shared and personal micro-mobility, *Transportation Research Part D: Transport and Environment*, **102**: 103134.

PhD thesis: Reck, D.J. (2021) Modelling travel behaviour with shared micro-mobility services and exploring their environmental implications. https://doi.org/10.3929/ethz-b-000510400

Overview of contributions on shared micro-mobility

All papers available open access online

Use of shared micro-mobility

Users of shared micro-mobility

Interactions with other modes

Reck, D.J., H. Haitao, S. Guidon and K.W. Axhausen (2021) Explaining shared micro-mobility usage, competition and mode choice by modelling empirical data from Zurich, Switzerland, *Transportation Research Part*

C: Emerging Technologies, 124: 102947.

k, D.J. and K.W. 1

Reck, D.J. and K.W. Axhausen (2021) Who uses shared micro-mobility services? Empirical evidence from Zurich, Switzerland, *Transportation* Research Part D: Transport and Environment, **94**: 102803.

Reck, D.J., H. Martin and K.W. Axhausen (2022) Mode choice, substitution patterns and environmental impacts of shared and personal micro-mobility, *Transportation Research Part D: Transport and Environment*, **102**: 103134.

PhD thesis: Reck, D.J. (2021) Modelling travel behaviour with shared micro-mobility services and exploring their environmental implications. https://doi.org/10.3929/ethz-b-000510400

Environmental impacts of shared micro-mobility services

(Peer-reviewed) literature on shared micro-mobility

e.g., Fishman et al., 2013; Fishman, 2016; Ricci, 2015; Teixeira et al., 2021

Shared e-bikes

e.g., Campbell et al., 2016; Guidon et al., 2019; He et al., 2019

Shared 4 16 e-scooters

e.g., Caspi et al., 2020; Noland, 2021; Wang et al., 2021

• ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

• ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

• ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

• ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

Life cycle assessments: summary

ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

- 1. Shared micro-mobility services are more sustainable (in terms of CO2 / pkm) than private cars
- 2. Shared micro-mobility services are **less sustainable** (...) than public transport
- 3. Shared micro-mobility services are less sustainable (...) than private micro-mobility vehicles

Life cycle assessments: summary

ITF (2020), de Bortoli and Christoforou (2020), Hollingsworth et al. (2019)

- 1. Shared micro-mobility services are more sustainable (in terms of CO2 / pkm) than private cars
- 2. Shared micro-mobility services are **less sustainable** (...) than public transport
- 3. Shared micro-mobility services are less sustainable (...) than private micro-mobility vehicles

However, life cycle assessments only provide part of the answer.

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips
 - B. Shared e-scooter
 - replaces trips otherwise conducted with the taxi (20%)
 - replaces trips otherwise conducted with the car (30%)
 - replaces trips otherwise conducted with PT (40%)
 - replaces trips otherwise walked (10%)
 - induces no new trips

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips
 - B. Shared e-scooter
 - replaces trips otherwise conducted with the taxi (20%)
 - replaces trips otherwise conducted with the car (30%)
 - replaces trips otherwise conducted with PT (40%)
 - replaces trips otherwise walked (10%)
 - induces no new trips
- Assumption: trips with same distances

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips
 - B. Shared e-scooter
 - replaces trips otherwise conducted with the taxi (20%)
 - replaces trips otherwise conducted with the car (30%)
 - replaces trips otherwise conducted with PT (40%)
 - replaces trips otherwise walked (10%)
 - induces no new trips
- Assumption: trips with same distances

- CO₂ emissions
 - A. Shared e-scooter (106 g CO₂ / pkm)
 - 40% * 0 g CO₂ / pkm
 - 60% * 72 g CO₂ / pkm
 - 10% * 106 g CO₂ / pkm

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips
 - B. Shared e-scooter
 - replaces trips otherwise conducted with the taxi (20%)
 - replaces trips otherwise conducted with the car (30%)
 - replaces trips otherwise conducted with PT (40%)
 - replaces trips otherwise walked (10%)
 - induces no new trips
- Assumption: trips with same distances

- CO₂ emissions
 - A. Shared e-scooter (106 g CO₂ / pkm)
 - 40% * 0 g CO₂ / pkm
 - 60% * 72 g CO₂ / pkm
 - 10% * 106 g CO₂ / pkm

Mix: 53.8 g

CO₂ / pkm

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips
 - B. Shared e-scooter
 - replaces trips otherwise conducted with the taxi (20%)
 - replaces trips otherwise conducted with the car (30%)
 - replaces trips otherwise conducted with PT (40%)
 - replaces trips otherwise walked (10%)
 - induces no new trips
- Assumption: trips with same distances

- CO₂ emissions
 - A. Shared e-scooter (106 g CO₂ / pkm)
 - 40% * 0 g CO₂ / pkm
 - 60% * 72 g CO₂ / pkm
- Mix: 53.8 g CO₂ / pkm
- 10% * 106 g CO₂ / pkm
- B. Shared e-scooter (106 g CO₂ / pkm)
 - 20% * 239 g CO₂ / pkm
 - 30% * 135 g CO₂ / pkm
 - 40% * 72 g CO₂ / pkm
 - 10% * 0 g CO₂ / pkm

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips
 - B. Shared e-scooter
 - replaces trips otherwise conducted with the taxi (20%)
 - replaces trips otherwise conducted with the car (30%)
 - replaces trips otherwise conducted with PT (40%)
 - replaces trips otherwise walked (10%)
 - induces no new trips
- Assumption: trips with same distances

- CO₂ emissions
 - A. Shared e-scooter (106 g CO₂ / pkm)
 - 40% * 0 g CO₂ / pkm
 - $-60\% * 72 g CO_2 / pkm$
- Mix: 53.8 g CO₂ / pkm

Mix: 117.1 g

- 10% * 106 g CO₂ / pkm
- B. Shared e-scooter (106 g CO₂ / pkm)
 - 20% * 239 g CO₂ / pkm
 - 30% * 135 g CO₂ / pkm
 - 40% * 72 g CO₂ / pkm
 CO₂ / pkm
 - 10% * 0 g CO₂ / pkm

- Consider two scenarios of <u>replaced modes</u>
 - A. Shared e-scooter
 - replaces trips otherwise walked (40%)
 - replaces trips otherwise conducted with PT (60%)
 - induces 10% new trips
 - B. Shared e-scooter
 - replaces trips otherwise conducted with the taxi (20%)
 - replaces trips otherwise conducted with the car (30%)
 - replaces trips otherwise conducted with PT (40%)
 - replaces trips otherwise walked (10%)
 - induces no new trips
- Assumption: trips with same distances

- CO₂ emissions
 - A. Shared e-scooter (106 g CO₂ / pkm)
 - 40% * 0 g CO₂ / pkm
 - $-60\% * 72 g CO_2 / pkm$
- Mix: 53.8 g CO_2 / pkm

Mix: 117.1 g

- 10% * 106 g CO₂ / pkm
- B. Shared e-scooter (106 g CO₂ / pkm)
 - 20% * 239 g CO₂ / pkm
 - 30% * 135 g CO₂ / pkm
 - 40% * 72 g CO₂ / pkm
 CO₂ / pkm
 - 10% * 0 g CO₂ / pkm
- We need substitution patterns to evaluate how sustainable a new transport mode is.
- Which substitution patterns do we observe in reality?

Two approaches to elicit substitution rates and derive net CO₂ emissions

Survey-based approach (well established)

- Did you conduct a trip with an [e-scooter, e-bike, ...] in the past 7 days?
- If yes, would you have made this trip if this vehicle had not been available?
- If yes, which alternative transport mode would you have chosen?

Choice model based approach (new)

- Estimate mode choice model
- Set availabilities of mode of interest to 0
- Estimate alternative choices

Two approaches to elicit substitution rates and derive net CO₂ emissions

Survey-based approach (well established)

- + Easy & cheap to conduct (1 survey is enough)
- Survey responses often biased (recall bias, social desirability bias)
- Responses valid only for last trip
- Metric: trips. But replaced distance is more important to calculate environmental impact

Choice model based approach (new)

- Difficult & expensive to conduct (GPS tracks + booking data)
- + No behavioral biases (revealed preferences)
- + Responses valid for all trips as they are based on preferences
- + Different metrics possible, incl. precise replaced distances

Study design

- Study design
 - 06/2020: 1st survey
 - 07-09/2020: 3 months GPS smartphone tracking
 - 10/2020: 2nd survey
- Recruitment
 - 10 000 invitations sent by cantonal statistical office
 - 90 CHF incentive
 - 540 participants completed entire study
 - 65 716 observed trips
- Additional data sources
 - Booking data
 - Vehicle availability
 - Weather data

Substitution rates

Substituted mode	Substitution rates (km-level) by micro-mobility mode				
	E-Bike (personal)	E-Bike (shared)	E-Scooter (personal)	E-Scooter (shared)	
Walk	9%	9%	19%	25%	
PT	29%	43%	27%	38%	
Car	48%	15%	25%	15%	
Bike	14%	29%	27%	13%	
E-Bike (personal)		5%	1%	2%	
E-Bike (shared)	0%		0%	5%	
E-Scooter (personal)	1%	0%		1%	
E-Scooter (shared)	0%	0%	0%		

Substituted mode	Gross emissions	Substitution rates (km-level) by micro-mobility mode			
		E-Bike	E-Bike	E-Scooter	E-Scooter
	[g CO ₂ / pkm]	(personal)	(shared)	(personal)	(shared)
Walk	0†	9%	9%	19%	25%
PT (avg.)	72 [†]	29%	43%	27%	38%
Car (avg.)	135 [†]	48%	15%	25%	15%
Bike	17 [†]	14%	29%	27%	13%
E-Bike (personal)	34†		5%	1%	2%
E-Bike (shared)	83 [†]	0%		0%	5%
E-Scooter (personal)	42 [†]	1%	0%		1%
E-Scooter (shared)	106 [†]	0%	0%	0%	

[†] Emission calculations drawn from ITF (2020a).

Substituted mode	Gross emissions	Substitution	rates (km-leve	es (km-level) by micro-mobility mode		
	[g CO ₂ / pkm]	E-Bike (personal)	E-Bike (shared)	E-Scooter (personal)	E-Scooter (shared)	
Walk	0†	9%	9%	19%	25%	
PT (avg.)	72 [†]	29%	43%	27%	38%	
Car (avg.)	135 [†]	48%	15%	25%	15%	
Bike	17 [†]	14%	29%	27%	13%	
E-Bike (personal)	34†		5%	1%	2%	
E-Bike (shared)	83†	0%		0%	5%	
E-Scooter (personal)	42 [†]	1%	0%		1%	
E-Scooter (shared)	106 [†]	0%	0%	0%		
Emissions of substituted mode	es	88	58	58	55	

[†] Emission calculations drawn from ITF (2020a).

Substituted mode	Gross emissions	Substitution rates (km-level) by micro-mobility mode			oility mode
	[g CO ₂ / pkm]	E-Bike (personal)	E-Bike (shared)	E-Scooter (personal)	E-Scooter (shared)
Walk	0#	9%	9%	19%	25%
PT (avg.)	72 [†]	29%	43%	27%	38%
Car (avg.)	135 [†]	48%	15%	25%	15%
Bike	17 [†]	14%	29%	27%	13%
E-Bike (personal)	34†		5%	1%	2%
E-Bike (shared)	83 [†]	0%		0%	5%
E-Scooter (personal)	42 [†]	1%	0%		1%
E-Scooter (shared)	106 [†]	0%	0%	0%	
Emissions of substituted modes		88	58	58	55
Emissions of micro-mobility	/ mode	34†	83†	42 [†]	106 [†]

[†] Emission calculations drawn from ITF (2020a).

Substituted mode	Gross emissions	Substitution	Substitution rates (km-level) by micro-mobility mode		
		E-Bike	E-Bike	E-Scooter	E-Scooter
	[g CO ₂ / pkm]	(personal)	(shared)	(personal)	(shared)
Walk	0†	9%	9%	19%	25%
PT (avg.)	72 [†]	29%	43%	27%	38%
Car (avg.)	135 [†]	48%	15%	25%	15%
Bike	17 [†]	14%	29%	27%	13%
E-Bike (personal)	34 [†]		5%	1%	2%
E-Bike (shared)	83 [†]	0%		0%	5%
E-Scooter (personal)	42 [†]	1%	0%		1%
E-Scooter (shared)	106 [†]	0%	0%	0%	
Emissions of substituted mod	es	88	58	58	55
Emissions of micro-mobility m	node	34†	83 [†]	42 [†]	106 [†]
Net emissions [g CO ₂ / pkm]		-54	25	-16	51

[†] Emission calculations drawn from ITF (2020a).

Conclusions and implications

- Dockless shared e-bikes and e-scooters emit more CO₂ than the transport modes they replace
 - > Shorter lifetime & production emissions
 - Operations
 - Substitution patterns
- Immediate implications
 - 'Sharing is caring' for the environment
 - ➤ Work with operators to decrease CO₂ emissions (e.g., durability, integration, incentives, availability)
 - ➤ Improve bike infrastructure
- Personal e-bikes and e-scooters emit less CO₂ than the transport modes they replace

Thank you for your attention.

Questions?

